
 

 

 

  

 

Abstract—This paper describes an algorithm for the automatic 

detection of a particular class of underwater sounds, using a single 

hydrophone. It is observed that many life-forms, systems or 

mechanisms emit distinctive acoustic signatures which are 

characterized by packets of relatively high frequency sound that 

are repeated at regular, low frequency intervals. These types of 

sounds are commonly produced by biological (e.g. fishes and 

invertebrates) and anthropogenic (e.g. scuba diver) sources. The 

algorithm exploits a simple feature, extracted from the raw 

hydrophone signal, which enables robust detection even in 

conditions of severe background noise. In order to demonstrate 

how the algorithm can be used, trial applications are presented for 

the detection of two different kinds of underwater sound source. 

First, the algorithm is applied to the problem of detecting 

soniferous fish sounds, showing that it is possible to robustly 

automate the detection of instances of cusk-eel presence in 

hydrophone recordings, thereby simplifying the arduous task of 

human monitoring of long sound recordings in marine biological 

research. Second, the algorithm is applied to the problem of 

automatic diver detection in a noisy urban estuary, demonstrating 

its potential for harbor security and fleet protection. 

I. INTRODUCTION 

This paper presents an algorithm which can be used to 

recognize the presence of a variety of soniferous entities in 

passive acoustic signals. It is observed that many life-forms, 

systems or mechanisms emit distinctive acoustic signatures 

characterized by packets of relatively high frequency sound 

that are repeated at regular intervals with a repetition rate of 

relatively low frequency. Pattern recognition schemes which 

can make use of both frequencies to characterize an entity are 

likely to be highly robust against many kinds of background 

noise, since there is a low probability that another entity will 

share both frequencies. 

We show how a useful feature can be extracted from passive 

acoustic signals which attempts to evaluate to what extent an 

object is present which emits regularly repeated packets of 
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sound in a characteristic high frequency range, such that the 

repetition rate falls within a characteristic low frequency range. 

Automated detection can be achieved simply by appropriate 

thresholding of the resulting feature value. 

We demonstrate this technique with applications to two very 

different examples of modulated sound sources, soniferous fish 

and SCUBA divers. The cusk-eel, Ophidion marginatum, is 

one example of a soniferous fish which can be recognized by 

its distinctive call consisting of a rapid series of clicks. Each 

click consists of relatively high frequency sound (order 1KHz), 

but the clicks are repeated at regular intervals of relatively low 

frequency (order tens of Hz). In a similar fashion, we note that 

the primary source of sound emitted by a SCUBA diver relates 

to the diver’s breathing. The breathing sounds occupy a wide 

frequency spectrum, but are most distinct from background 

noise in a prominent ultrasonic frequency range. Thus a diver 

can be characterized by packets of high frequency ultrasound 

which occur at a low frequency repetition rate, corresponding 

to typical human breathing rates (around 0.3Hz). 

 

A. Acoustic surveying of soniferous fish 

There is increasing interest, amongst the marine biology 

community, in the use of acoustic surveying techniques for 

non-invasive population assessments and for the identification 

of essential fish habitats. Studies of fish sounds can provide a 

wealth of data on temporal and spatial distribution patterns, 

habitat use and spawning, feeding, and predator avoidance 

behaviors, [1], [2], [3]. Unfortunately, acoustic surveying of 

fisheries is hampered in that it relies on human experts to 

painstakingly search through many hours of sound recording by 

hand in order to count the instances of soniferous fish activity. 

This difficulty has severely limited the scope of previous 

attempts at acoustic surveying. We demonstrate an application 

of our passive acoustic detection algorithm to automating the 

process of searching through lengthy sound recordings to 

identify instances of fish calling. 

 

B. The diver detection problem 

One of the most challenging aspects of port security is 

providing the means to protect against threats from under the 

surface of the water, [4]. In particular, it is felt that a significant 

terrorist threat might be posed to domestic harbors in the form 

of an explosive device delivered underwater by a diver using 

SCUBA apparatus, [5]. Although active sonar systems exist 
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which can detect and track moving targets, e.g. [6], the 

problem of recognizing which, if any, moving entities are 

human divers is less well understood. This recognition problem 

lends itself to a passive acoustic approach, since these 

techniques can make use of prior knowledge of the specific 

sounds generated by a diver. Additionally, existing techniques 

which rely on active sonar devices may be prohibited in many 

domestic harbors due to their environmental effects (e.g. 

disturbance of marine mammals). 

II. A SIMPLE PASSIVE ACOUSTIC DETECTION ALGORITHM FOR 

MODULATED SOUNDS 

We address the problem of passively detecting the presence 

of a class of modulated sound emitting entities which can be 

characterized by two frequencies. Firstly, these entities emit 

packets of sound for which energy is either concentrated in, or 

best dominates noise, over a frequency range, ∆fhigh, about a 

prominent characteristic high frequency, fhigh, i.e. the entity 

signal is most distinct from typical background noise in this 

range. Secondly, these packets are repeated at regular intervals, 

such that the repetition rates lie in a lower frequency range, 

∆flow, about a characteristic low frequency, flow. 

We now describe how to calculate a single feature, which 

can be used with a simple discriminatory thresholding function 

to determine entity presence robustly against severe 

background noise. The feature evaluates to what extent an 

object is present which emits regularly repeating pulses of 

sound with a prominent component in the high frequency 

range, ∆fhigh, and with a pulse repetition rate in the low 

frquency range, ∆flow. The feature calculation process is 

summarized in figure 1. 

Firstly the raw hydrophone signal is narrow bandpass 

filtered over a small range of frequencies, ∆fhigh, about the 

characteristic high frequency, fhigh. Secondly, an envelope is 

fitted to the filtered signal by connecting peaks and smoothing. 

Thirdly, the envelope is Fast Fourier Transformed to produce a 

spectrum for the envelope waveform. Lastly, the spectrum is 

integrated over the range, ∆flow, about the characteristic low 

frequency, flow, yielding a single characteristic number. This 

number is discriminating in that it takes high values when the 

entity of interest is present and low values otherwise, even in 

severe conditions of background noise. 

This feature can be used for detection by means of a simple 

thresholding process. At any point in time, the entity is 

considered to be present if the feature value, calculated for the 

most recent portion of signal, exceeds a critical threshold 

value. To implement this detection system, only a small 

number of parameters must be determined from training data: 

fhigh and ∆fhigh, flow and ∆flow, and an appropriate threshold 

value. These parameters are obviously application specific. In 

the following sections we describe how these parameters were 

estimated for two very different applications. 

 

 

 

III. DETECTING CUSK-EEL CALLS 

A. Characterizing cusk-eels 

The cusk-eel, Ophidion marginatum, is one example of a 

soniferous fish which can be recognized by its distinctive call 

consisting of a rapid series of clicks (maximum number of 

clicks 73, median 31, [7]). Cusk-eels were recorded in the wild 

at a sampling rate of 20 kHz using bottom-mounted 

hydrophones installed at locations identified as potential cusk-

eel habitats. Analysis of the soniferous activity of cusk-eels 

revealed that they tend to emit sound pulses (clicks) of 

approximately equal amplitude at regular intervals. The cusk-

eel calls examined for this paper typically consisted of up to 27 

pulses, which tended to be repeated in a characteristic low 

frequency repetition rate range, ∆flow, between 20 and 25 Hz. 

We note that other researchers have reported somewhat lower 

repetition rates (18.3 Hz) for cusk-eel sounds based on 164 

randomly selected calls, [7]. The discrepancy may lie in the 

fact that the 20-25Hz, that we report, was measured for 1s 

duration samples of cusk-eel sound, whereas Mann et al. divide 

the duration of a complete call (often several seconds) by the 

total number of clicks in that call (the method typically 

employed by marine biologists). The discrepancy might 

possibly be caused by a single cusk-eel call being composed of 

several packets of 20-25Hz repetition, interspersed with very 

small delays or short periods of lower frequency. Since this 

paper addresses the problem of ascertaining whether or not any 

given 1s period of sound recording contains a cusk-eel call, the 

use of the 20-25Hz range is preferred. This is important in that 

the repetition frequency reported by marine biologists may not 

be the best value to use with detection algorithms. 

Figure 1. Procedure for extracting a discriminatory feature from 

hydrophone signals. 



 

 

 

Time-series data, was processed using a fast Fourier 

transform (FFT) to produce spectra of the cusk-eel calls (figure 

2). The spectrum of the call was compared to that of ambient 

noise in the cusk-eel habitat to identify the prominent 

frequency range for filtering. It is observed that the cusk-eel 

signal occupies a broad spectrum but tends to dominate the 

background noise in a frequency band, ∆fhigh, between 1200 

and 1500Hz. Hence the raw hydrophone signals can be band-

pass filtered in this range to obtain a time-series corresponding 

to the highest signal-to-noise ratio (SNR). 

 

B. Calculating a discriminating “cusk-eel number” 

We now describe how a hydrophone signal is processed to 

yield a discriminating feature value, or “cusk-eel number”, 

which correlates with cusk-eel presence. Each of the following 

steps corresponds to a stage in figure 1. Firstly, the hydrophone 

signal is band-pass filtered over a frequency range, ∆fhigh, of 

1200 to 1500 Hz (figure 3). Next, an envelope of the time 

series signal is calculated by discarding the negative 

amplitudes, then smoothing by low-pass filtering (figure 4). 

The envelope waveform is now Fast Fourier Transformed to 

give an envelope spectrum (figure 5). For envelopes of cusk-

eel calls, the energy is highly concentrated in a band of 

frequencies between 20 and 25 Hz (the frequency at which the 

characteristic cusk-eel clicking sounds are repeated). Note that 

the large signal, close to zero frequency, is a DC level resulting 

from the demodulation process, and can be ignored. In 

contrast, performing the same operation (filtering, 

demodulating and Fourier Transforming) on typical samples of 

background noise does not yield a concentration of energy in 

this frequency band (figure 6). Hence this peak is highly 

Figure 5. Typical envelope spectrogram for a band-pass filtered cusk-eel call. 

∆flow 

Figure 2. Spectrum for a cusk-eel call compared against typical ambient 

background noise spectrum recorded in the cusk-eel habitat. 
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Figure 3. Cusk-eel call following band-pass filtering. 23 pulses of high 

frequency sound emitted at regular, low frequency intervals. 
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Figure 4. Envelope fitted to filtered hydrophone 

Figure 6. Envelope spectrogram for band-pass filtered ambient 

noise in a cusk-eel marine habitat. 



 

 

 

discriminatory. There is some variation in the number of 

characteristic pulses produced per second, both between 

different cusk-eel calls and also throughout the duration of any 

particular call ([7] reports a coefficient of variation of 2.8%). 

Hence the energy associated with a particular frequency, e.g. 

23Hz, is not a generalizable feature (may not be appropriate to 

all cusk-eels). Therefore, to account for the variable nature of 

cusk-eel calling, we integrate the density function over a range 

of possible calling rates (∆flow) of 20-25Hz, yielding a single 

“cusk-eel number”. This number is a useful discriminatory 

feature since it takes large values when cusk-eels are present 

and low values otherwise. 

 

C.  Choosing a suitable discriminating threshold 

A simple method for automatic detection of Cusk-eel calling 

is to threshold the cusk-eel number. Any portions of 

hydrophone signal whose cusk-eel numbers exceed the 

threshold are now believed 

to contain samples of cusk-

eel calling. 

Note, that the correct 

choice of threshold is not 

obvious. This choice must 

always be a trade-off 

between probability of 

“false positive” error 

(indicating a cusk-eel when 

none is present, likely with 

low thresholds) and 

probability of “false negative” error (failing to indicate cusk-

eel presence when a cusk-eel really is present, likely with high 

thresholds). The best trade-off between these two kinds of error 

will be different for different applications. Marine biologists 

will often choose to conservatively estimate the number of calls 

and hence minimize false positives at the expense of a higher 

false negative rate in order to avoid over-estimating fish 

activity levels or numbers. However, for home-land defense 

applications, such as diver detection (see section IV), the 

opposite is often true – we would rather have some extra false 

alrms than risk missing a terrorist during a real (but infrequent) 

attack. 

Cusk-eel numbers (feature values) were calculated for 50 

sample recordings (1s duration each), labeled by a human 

expert as containing cusk-eel calls, and 50 additional 1s 

recordings of ambient noise, without Cusk-eel calls. A 

threshold was chosen to minimize probability of 

misclassification over this sample data set. 

 

D. Automated analysis of a hydrophone recording 

A major obstacle to the application of passive acoustic 

surveying techniques to fisheries science, is the need for 

laborious hand analysis of many hours of sound recordings by  

human experts. In order to facilitate acoustic fisheries surveys, 

we apply our  detection algorithm to automating the detection 

of instances of cusk-eel calling in extended hydrophone 

recordings of soniferous fish activity (figure 7). 

A sixty second sample of hydrophone recording was 

processed by machine, based on the cusk-eel number 

parameters and threshold obtained in sections IIIA, IIIB and 

IIIC. The computer was tasked with determining whether or 

not each one second portion of the recording contained 

instances of cusk-eel soniferous activity. The output of the 

automated detection system was compared with similar 

analysis conducted by a human expert (figure 7). The output of 

the automated system is largely consistent with the decisions of 

the human expert, except for a five second period (35-40 

seconds) during which cusk-eel calls were extremely faintly 

audible at the limit of the sensitivity of human hearing. This 

seems consistent with the preference of many biologists for 

conservative identification. As well as assisting with the 

automation of labor intensive tasks, we envisage that this 

technique may help benchmark consistent standards for the 

interpretation of soniferous fish recordings during acoustic 

surveys. 

 

IV. RECOGNIZING DIVER PRESENCE IN AN URBAN ESTUARY 

We now apply the same passive acoustic detection algorithm 

to the very different problem of automatically recognizing the 

presence of SCUBA divers in a noisy urban estuary, addressing 

counter-terrorism concerns for port security and fleet 

protection. 

A.  Measuring the acoustic signature of a diver  

A number of experiments have been carried out to 

investigate the acoustic signature of a diver and to identify 

important characteristics of this signature which might be used 

for the automated recognition of diver presence. Tests were 

conducted, using our team of expert divers, in the Manhattan 

region of the Hudson River near the Stevens Institute of 

Technology (figure 8). 

 

Figure 7. Machine analysis of a one minute segment of sound recording 

in the presence of soniferous cusk-eels. Comparison with expert human 

analysis. Note the conservative estimation, i.e. trading off some false 

negative errors for zero false positive errors in accordance with 

biologists’ measurement preferences. Six misclassifications out of 60 one 

second samples, all false negative errors. 



 

 

 

The depth in the area of the test was between 2 and 3 meters. 

An omni-directional hydrophone was placed on the river 

bottom and the diver swam along several paths at different 

distances from the hydrophone. The diver swam in the middle 

of the water column at a height 1-2m above the bottom. The 

diver swam along straight line paths of approximately 40m 

length, passing the hydrophone at ranges between 1m and 6m. 

Since the diver paths are known, and the diver was instructed 

to swim at a constant speed, it is possible to estimate the range 

from the diver to the hydrophone, for any given portion of the 

recorded signal. Fig.9 presents the spectrogram of the recorded 

signal. Bright vertical stripes indicate the acoustic signal 

produced by the diver, each time he breaths. 

The amplitude of the signal increases as the diver swims 

towards the hydrophone (left half of the figure) and decreases 

as the diver moves away from the hydrophone (right half of the 

figure). The periodic signal is clearly visible at all measured 

ranges (up to 20m) from the hydrophone. 

Figure 10 shows the spectrum of the recorded signal for a 

diver’s breathing sound and the difference between this and the 

spectrum for an example of background river noise with no 

diver present. Examination of the difference signal indicates 

that a component of diver sound in a particular frequency 

range, ∆fhigh, offers the highest signal to noise ratio (SNR). For 

the purposes of detecting diver presence, it is therefore sensible 

to filter all hydrophone signals at this frequency, which we will 

refer to as the “prominent diver frequency”. 

B.  Calculating a characteristic number for divers 

We now describe the procedure for computing a highly 

discriminatory “swimmer number” for diver sounds. Firstly the 

raw hydrophone signal is band-pass filtered in the prominent 

diver frequency range, ∆fhigh, in order to improve SNR. Figure 

11 shows an example of a hydrophone signal, recorded for a 

diver in the Hudson River, after band-pass filtering. 

Next, an envelope is fitted to the signal. Negative values are 

removed and consecutive peaks are connected. The resulting 

signal is then smoothed by low-pass filtering (figure 12). 

Figure 8 (color online).  Stevens Institute of Technology, Hoboken campus 

and Hudson River where the diver detection tests were conducted. 

Figure 9. Spectrogram in the frequency band below 100 KHz (Y axis) 

versus time (X axis). The entire record is approximately 160 sec and 

the diver moved 40m during this time. The periodic signal of the 

diver breathing is clearly visible at all ranges from the hydrophone. 

Figure 10. The spectra of the recorded signals for the breathing sound of a 

diver and SNR in the Hudson River. 

Figure 11. Acoustic signal of a diver, band-pass filtered at 

prominent diver frequency. 

Figure 12. Diver signal envelope. 



 

 

 

This envelope is now Fourier transformed to give a 

spectrum. Figure 13 shows the spectrum of the envelope for an 

example of a diver in the Hudson River, whereas figure 14 

shows the spectrum of the envelope for an example of typical 

Hudson River background noise with no diver present. 

In signals recorded with a diver present, there is clearly a 

cluster of energy around the diver’s breathing frequency 

(around 0.3 Hz or about three breaths per second) which is not 

present in background river noise. This gives rise to a useful 

discriminating feature. We can now integrate over a likely 

range of human breathing rates to give a single characteristic 

number, the “swimmer number”, for divers. 

Integrating over a range of frequencies is useful since it 

enables generality, i.e. the algorithm can cope with divers who 

breathe at a variety of different rates. It should be noted that 

generality comes at a cost. By integrating over a range of 

possible breathing rates, we sacrifice optimal detection 

performance for any specific breathing rate. In terms of 

detection errors, we are trading off false positives (claiming 

that there is a diver present when there is not) and false 

negatives (failing to detect a diver when one really is present). 

This trade off can be adjusted by adjusting the range of 

integration. In this paper, for proof of principle, we have 

integrated over the range 0.2 to 0.4 Hz. 

 

C.  Variation of swimmer number with range and noise level 

The swimmer number, calculated by integrating the 

spectrum of the hydrophone signal envelope, is useful as a 

discriminating feature, in that it takes large values when a 

swimmer is present and small values when no swimmer is 

present, even in the presence of noise. This leads naturally to a 

simple algorithm for automatic diver detection. At any instant 

in time, the previous few seconds of hydrophone signal are 

used to calculate a swimmer number value. The swimmer 

number is then compared against a threshold. Swimmer 

numbers above the threshold are classified as indicating diver 

presence, those below are classified as indicating no diver 

presence. Care must be taken when choosing this threshold 

value since threshold choice, background noise levels and 

maximum detection range are all closely related. 

 Swimmer number values were calculated for samples of 

hydrophone data featuring a diver in the Hudson River. It has 

been possible to estimate the range from the diver to the 

hydrophone for each sample (see section A). We can thus 

estimate the fall off in swimmer number with range (figure 15). 

It is convenient to work with the logarithm of the swimmer 

number values, giving a log(swimmer number) plot, expressed 

in dB scale. 

Superimposed on this plot (figure 15) are the log(swimmer 

number) values for various samples of background noise for 

which no diver was present. Extrapolating the plots provides 

information about the maximum range at which a diver can be 

detected. If a discriminating threshold is set to a value just 

above the swimmer number value for “Noise level 1”, we 

might expect “Range 1” to be the maximum range at which a 

diver can be detected. However, recent work, [8], shows that, 

in theory there is a 50% probability of detection at this range, 

and significant detection probabilities at greater ranges. 

Figure 13. Envelope spectrogram for river with diver present. 

Figure 14. Envelope spectrogram for typical river noise with 

no diver present. 

Figure 15. Drop off in log(swimmer number) value with range. Comparison 

with log(swimmer number) calculated for various ambient noise conditions. 

Noise level 1: River noise with low traffic levels, at night time. Noise level 2: 

River with ferry and helicopter noise. Noise level 3: Rough surface 

conditions, large waves and two helicopters present. Noise level 4: Severe 

background noise sources including airplane and helicopter traffic, speed 

boat and ferry. 

Range 1 



 

 

 

In practice it may be necessary to use a more conservative 

threshold to ensure robustness to noise levels which vary 

considerably in an urban harbor environment. Again, there 

must be a design tradeoff between extending the maximum 

detection range and achieving robustness of detection decisions 

at lesser ranges. To investigate variation of detection ranges 

and appropriate threshold levels with noise levels, swimmer 

numbers were calculated for various kinds of background noise 

which are present intermittently in the Hudson River (see 

figure 15). During occasional episodes of extreme background 

noise (e.g. “airplane, helicopter, speed boat and ferry”) the 

possible detection range is considerably reduced. However, it 

should be noted that these levels of noise are so extreme as to 

prohibit conversation between two personnel standing together 

on a boat during these conditions.  

 

V.  CONCLUSIONS AND DISCUSSION 

This paper has demonstrated an algorithm for automatic 

passive acoustic detection and identification which can be 

applied to a variety of underwater entities which emit repeated 

pulses of sound. 

The algorithm has been demonstrated with two very 

different applications. Firstly, measurements of the vocal 

activity of soniferous fish in their natural habitat field 

conditions have yielded algorithm parameters that enable the 

automated analysis of large amounts of hydrophone data to 

facilitate acoustic surveying of fisheries. Not only does the 

algorithm provide a means of automating labor intensive 

analysis tasks, but it also offers a means of benchmarking 

uniform standards for analysis of acoustic survey data which 

until now has been dependent on relatively subjective human 

analysis. Secondly, diver characteristics have been derived 

from a series of experiments, measuring the acoustic radiation 

from divers in the Hudson River. Extensive measurements of a 

variety of noise conditions in the river have also been 

collected. Exploiting these characteristics, we have determined 

suitable algorithm parameters which enable robust detection of 

the presence of a diver from a single, passive hydrophone 

signal, in an extremely noisy urban estuary environment. 

Future work will seek to enhance detection performance 

using both hardware and software. We are presently 

performing experiments to explore the use of beam-forming 

multiple hydrophone arrays to suppress various kinds of noise. 

It is thought that this may prove particularly useful for reducing 

sources of noise such as waves and wind. Secondly, the 

application of various signal processing techniques may 

improve detection range. These include incorporating the use 

of matched filtering techniques and also noise suppression 

techniques based on understanding of the spectra, directivity 

and correlation properties of common noise sources. Thirdly, 

the discriminating feature, presented in this paper, might be 

combined with other kinds of features, enabling more robust 

discrimination techniques in high dimensional feature spaces. 

Intermittent episodes of extreme noise remain problematic. 

We can either settle for a conservative (high valued) 

discrimination threshold (severely reducing the detection 

range), or we must expect occasional “false positive” detection 

errors (i.e. noise levels trigger the detection system when no 

diver or fish is present). One approach to this difficult problem 

would be an adaptive threshold, i.e. an algorithm which 

continually adjusts the threshold in response to varying noise 

levels. A second approach is to explore other pattern 

recognition approaches for recognizing signals from common 

noise sources in the river environment (e.g. motor boats, 

aircraft etc.). This would enable extended detection ranges 

from low threshold values while eliminating many of the 

resulting false positive detection errors by recognizing them as 

common noise sources. 

A limitation of the diver detection application is that 

detecting diver presence is contingent on a relatively long 

segment of hydrophone signal. Since our algorithm attempts to 

identify packets of sound which occur at the diver’s breathing 

rate (approximately one breath every three seconds), each 

swimmer number must be derived from at least 6s of sensor 

signal. The diver detection results described in this paper were 

derived using 10s portions of signal. This poses a problem of 

localization, i.e. the diver may change his position during the 

detection process. However, the focus of this work is 

addressing the problem of sound source presence (distinct from 

the additional problem of estimating sound source position). 

This work might conceivably be combined with additional 

techniques in order to also track the trajectory of a sound 

source. Additionally, our expert divers have reported the need 

to move very slowly in the turbid and cluttered river 

environment, with typical speeds of around 0.3ms
-1

, causing 

perhaps ±1.5m error on position measurements derived from 

10s of hydrophone signal, a reasonable and realistic level of 

accuracy for a difficult, noisy environment. This issue is less 

significant in the fish detection problem, since the more rapid 

pulse repetition frequency (20-25Hz) enables detection from 

much shorter samples of signal (0.15s). 

For a discussion of how this work may be extended to solve 

problems of localization and tracking of moving targets, see 

[8]. 

A limitation of the soniferous fish application is that, while 

this work enables the identification of the presence of 

soniferous fish calling at any given instance, the more difficult 

problem of automated identification and counting of complete 

calls has not yet been addressed. 

 Further investigations are necessary of the response of this 

algorithm to scenarios involving multiple divers or several 

simultaneous fish vocalizations. It is worth noting that far 

greater diver detection ranges might be possible in quieter 

waters. The noise problems addressed in this paper are extreme 

and could be viewed as a worst case scenario. 

We also plan to carry out more extensive investigations of 

the acoustic signatures of the objects of interest. For diver 



 

 

 

detection we are investigating the variation of acoustic 

signature with different types of SCUBA equipment, different 

ranges and orientations of the diver to the hydrophone, 

different individual divers and different diver breathing rates. 

For fish recognition, we will extend our pilot study of 

automated cusk-eel detection, exploring the sensitivity of 

detection techniques to the number of call pulses, call duration, 

and pulse repetition frequency. For both applications, it is 

hoped that future investigations may reveal additional useful 

features, enabling more robust detection. 
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